Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38478579

RESUMEN

A novel aerobic methanotrophic bacterium, designated as strain IN45T, was isolated from in situ colonisation systems deployed at the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. IN45T was a moderately thermophilic obligate methanotroph that grew only on methane or methanol at temperatures between 25 and 56 °C (optimum 45-50 °C). It was an oval-shaped, Gram-reaction-negative, motile bacterium with a single polar flagellum and an intracytoplasmic membrane system. It required 1.5-4.0 % (w/v) NaCl (optimum 2-3 %) for growth. The major phospholipid fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8. The 16S rRNA gene sequence comparison revealed 99.1 % sequence identity with Methylomarinovum caldicuralii IT-9T, the only species of the genus Methylomarinovum with a validly published name within the family Methylothermaceae. The complete genome sequence of IN45T consisted of a 2.42-Mbp chromosome (DNA G+C content, 64.1 mol%) and a 20.5-kbp plasmid. The genome encodes genes for particulate methane monooxygenase and two types of methanol dehydrogenase (mxaFI and xoxF). Genes involved in the ribulose monophosphate pathway for carbon assimilation are encoded, but the transaldolase gene was not found. The genome indicated that IN45T performs partial denitrification of nitrate to N2O, and its occurrence was indirectly confirmed by N2O production in cultures grown with nitrate. Genomic relatedness indices between the complete genome sequences of IN45T and M. caldicuralii IT-9T, such as digital DNA-DNA hybridisation (51.2 %), average nucleotide identity (92.94 %) and average amino acid identity (93.21 %), indicated that these two methanotrophs should be separated at the species level. On the basis of these results, strain IN45T represents a novel species, for which we propose the name Methylomarinovum tepidoasis sp. nov. with IN45T (=JCM 35101T =DSM 113422T) as the type strain.


Asunto(s)
Ácidos Grasos , Nitratos , Ácidos Grasos/química , Nitratos/metabolismo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Filogenia , Técnicas de Tipificación Bacteriana , Fosfolípidos/química
2.
J Bacteriol ; 206(2): e0035123, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38289045

RESUMEN

The DPANN archaeal clade includes obligately ectosymbiotic species. Their cell surfaces potentially play an important role in the symbiotic interaction between the ectosymbionts and their hosts. However, little is known about the mechanism of ectosymbiosis. Here, we show cell surface structures of the cultivated DPANN archaeon Nanobdella aerobiophila strain MJ1T and its host Metallosphaera sedula strain MJ1HA, using a variety of electron microscopy techniques, i.e., negative-staining transmission electron microscopy, quick-freeze deep-etch TEM, and 3D electron tomography. The thickness, unit size, and lattice symmetry of the S-layer of strain MJ1T were different from those of the host archaeon strain MJ1HA. Genomic and transcriptomic analyses highlighted the most highly expressed MJ1T gene for a putative S-layer protein with multiple glycosylation sites and immunoglobulin-like folds, which has no sequence homology to known S-layer proteins. In addition, genes for putative pectin lyase- or lectin-like extracellular proteins, which are potentially involved in symbiotic interaction, were found in the MJ1T genome based on in silico 3D protein structure prediction. Live cell imaging at the optimum growth temperature of 65°C indicated that cell complexes of strains MJ1T and MJ1HA were motile, but sole MJ1T cells were not. Taken together, we propose a model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila.IMPORTANCEDPANN archaea are widely distributed in a variety of natural and artificial environments and may play a considerable role in the microbial ecosystem. All of the cultivated DPANN archaea so far need host organisms for their growth, i.e., obligately ectosymbiotic. However, the mechanism of the ectosymbiosis by DPANN archaea is largely unknown. To this end, we performed a comprehensive analysis of the cultivated DPANN archaeon, Nanobdella aerobiophila, using electron microscopy, live cell imaging, transcriptomics, and genomics, including 3D protein structure prediction. Based on the results, we propose a reasonable model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila, which will enhance our understanding of the enigmatic physiology and ecological significance of DPANN archaea.


Asunto(s)
Archaea , Archaea/genética , Genoma Arqueal , Genómica , Filogenia
3.
Microscopy (Oxf) ; 71(5): 289-296, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-35778971

RESUMEN

Sandwich freezing is a method of rapid freezing by sandwiching specimens between two metal disks and has been used for observing exquisite the close-to-native ultrastructure of living yeast and bacteria. Recently, this method has been found to be useful for preserving cell images of glutaraldehyde-fixed animal and human tissues. In the present study, this method was applied to observe the fine structure of mouse glomerular capillary loops. Morphometry was then performed, and the results were compared with the data obtained by an in vivo cryotechnique, which may provide the closest ultrastructure to the native state of living tissue. The results show that the ultrastructure of glomerular capillary loops obtained by sandwich freezing-freeze-substitution after glutaraldehyde fixation was close to that of the ultrastructure obtained by in vivo cryotechnique not only in the quality of cell image but also in quantitative morphometry. They indicate that the ultrastructure obtained by sandwich freezing-freeze-substitution after glutaraldehyde fixation may more closely reflect the living state of cells and tissues than conventional chemical fixation and dehydration at room temperature and conventional rapid freezing-freeze-substitution of excised tissues without glutaraldehyde fixation. Sandwich freezing-freeze-substitution techniques should be used routinely as a standard method for observing the close-to-native ultrastructure of biological specimens.


Asunto(s)
Substitución por Congelación , Glomérulos Renales , Animales , Capilares/ultraestructura , Substitución por Congelación/métodos , Glutaral , Técnicas Histológicas , Humanos , Glomérulos Renales/irrigación sanguínea , Glomérulos Renales/ultraestructura , Ratones
4.
Appl Environ Microbiol ; 88(2): e0075821, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34788070

RESUMEN

The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and "Bathymodiolus" platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.


Asunto(s)
Methylococcaceae , Microbiota , Mytilidae , Animales , Metano/metabolismo , Methylococcaceae/genética , Methylococcaceae/metabolismo , Mytilidae/microbiología , Filogenia , ARN Ribosómico 16S/genética , Simbiosis
5.
J Vis Exp ; (173)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34338682

RESUMEN

Chemical fixation has been used for observing the ultrastructure of cells and tissues. However, this method does not adequately preserve the ultrastructure of cells; artifacts and extraction of cell contents are usually observed. Rapid freezing is a better alternative for the preservation of cell structure. Sandwich freezing of living yeast or bacteria followed by freeze-substitution has been used for observing the exquisite natural ultrastructure of cells. Recently, sandwich freezing of glutaraldehyde-fixed cultured cells or human tissues has also been used to reveal the ultrastructure of cells and tissues. These studies have thus far been carried out with a handmade sandwich freezing device, and applications to studies in other laboratories have been limited. A new sandwich freezing device has recently been fabricated and is now commercially available. The present paper shows how to use the sandwich freezing device for rapid freezing of biological specimens, including bacteria, yeast, cultured cells, isolated cells, animal and human tissues, and viruses. Also shown is the preparation of specimens for ultrathin sectioning after rapid freezing and procedures for freeze-substitution, resin embedding, trimming of blocks, cutting of ultrathin sections, recovering of sections, staining, and covering of grids with support films.


Asunto(s)
Substitución por Congelación , Técnicas Histológicas , Animales , Congelación , Glutaral , Humanos , Microscopía Electrónica
6.
J Eukaryot Microbiol ; 68(1): e12828, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33128276

RESUMEN

Benthic foraminifera, members of Rhizaria, inhabit a broad range of marine environments and are particularly common in hypoxic sediments. The biology of benthic foraminifera is key to understanding benthic ecosystems and relevant biogeochemical cycles, especially in hypoxic environments. Chilostomella is a foraminiferal genus commonly found in hypoxic deep-sea sediments and has poorly understood ecological characteristics. For example, the carbon isotopic compositions of their lipids are substantially different from other co-occurring genera, probably reflecting unique features of its metabolism. Here, we investigated the cytoplasmic and ultrastructural features of Chilostomella ovoidea from bathyal sediments of Sagami Bay, Japan, based on serial semi-thin sections examined using an optical microscope followed by a three-dimensional reconstruction, combined with TEM observations of ultra-thin sections. Observations by TEM revealed the presence of abundant electron-dense structures dividing the cytoplasm. Based on histochemical staining, these structures are shown to be composed of chitin. Our 3D reconstruction revealed chitinous structures in the final seven chambers. These exhibited a plate-like morphology in the final chambers but became rolled up in earlier chambers (toward the proloculus). These chitinous, plate-like structures may function to partition the cytoplasm in a chamber to increase the surface/volume ratio and/or act as a reactive site for some metabolic functions.


Asunto(s)
Quitina/ultraestructura , Foraminíferos/ultraestructura , Japón , Microscopía Electrónica de Transmisión
7.
Microscopy (Oxf) ; 70(2): 215-223, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33206169

RESUMEN

We have been using sandwich freezing of living yeast and bacteria followed by freeze-substitution for observing close-to-native ultrastructure of cells. Recently, sandwich freezing of glutaraldehyde-fixed cultured cells and human tissues have been found to give excellent preservation of ultrastructure of cells and tissues. These studies, however, have been conducted using a handmade sandwich freezing device and have been limited in a few laboratories. To spread the use of this method to other laboratories, we fabricated and commercialized a new sandwich freezing device. The new device is inexpensive, portable and sterilizable. It can be used to rapid-freeze viruses, bacteria, yeast, cultured cells and animal and human tissues to a depth of 0.2 mm if tissues are prefixed with glutaraldehyde. The commercial availability of this device will expand application of rapid freezing to wide range of biological materials.


Asunto(s)
Microscopía por Crioelectrón/métodos , Escherichia coli/ultraestructura , Substitución por Congelación/métodos , Mastocitos/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Virus/ultraestructura , Animales , Congelación , Glutaral/farmacología , Humanos , Microtomía/métodos , Piel/citología , Piel/ultraestructura
8.
Nat Commun ; 11(1): 6381, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318506

RESUMEN

A key feature that differentiates prokaryotic cells from eukaryotes is the absence of an intracellular membrane surrounding the chromosomal DNA. Here, we isolate a member of the ubiquitous, yet-to-be-cultivated phylum 'Candidatus Atribacteria' (also known as OP9) that has an intracytoplasmic membrane apparently surrounding the nucleoid. The isolate, RT761, is a subsurface-derived anaerobic bacterium that appears to have three lipid membrane-like layers, as shown by cryo-electron tomography. Our observations are consistent with a classical gram-negative structure with an additional intracytoplasmic membrane. However, further studies are needed to provide conclusive evidence for this unique intracellular structure. The RT761 genome encodes proteins with features that might be related to the complex cellular structure, including: N-terminal extensions in proteins involved in important processes (such as cell-division protein FtsZ); one of the highest percentages of transmembrane proteins among gram-negative bacteria; and predicted Sec-secreted proteins with unique signal peptides. Physiologically, RT761 primarily produces hydrogen for electron disposal during sugar degradation, and co-cultivation with a hydrogen-scavenging methanogen improves growth. We propose RT761 as a new species, Atribacter laminatus gen. nov. sp. nov. and a new phylum, Atribacterota phy. nov.


Asunto(s)
Estructuras de la Membrana Celular/ultraestructura , Rhizobiaceae/clasificación , Rhizobiaceae/citología , Rhizobiaceae/aislamiento & purificación , Bacterias Anaerobias , Composición de Base , Estructuras de la Membrana Celular/genética , ADN Bacteriano/genética , Ácidos Grasos , Fermentación , Genoma Bacteriano , Sedimentos Geológicos/microbiología , Japón , Filogenia , ARN Ribosómico 16S , Rhizobiaceae/genética , Análisis de Secuencia de ADN
9.
Sci Rep ; 10(1): 2266, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042000

RESUMEN

Sapphirinid copepods, which are marine zooplankton, exhibit tunable structural colors originating from a layered structure of guanine crystal plates. In the present study, the coloring portion of adult male of a sapphirinid copepod, Sapphirina nigromaculata, under the dorsal body surface was characterized to clarify the regulation and actuation mechanism of the layered guanine crystals for spectral control. The coloring portions are separated into small domains 70-100 µm wide consisting of an ordered array of stacked hexagonal plates ~1.5 µm wide and ~80 nm thick. We found the presence of chitin-based honeycomb frameworks that are composed of flat compartments regulating the guanine crystal plates. The structural color is deduced to be tuned from blue to achromatic via yellow and purple by changing the interplate distance according to vital observation and optical simulation using a photonic array model. The framework structures are essential for the organization and actuation of the particular photonic arrays for the exhibition of the tunable structural color.


Asunto(s)
Quitina/ultraestructura , Color , Copépodos/ultraestructura , Guanina/química , Zooplancton/ultraestructura , Adaptación Biológica , Animales , Quitina/química , Copépodos/fisiología , Cristalización , Masculino , Microscopía Electrónica de Rastreo , Conducta Predatoria , Zooplancton/fisiología
10.
Nature ; 577(7791): 519-525, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942073

RESUMEN

The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.


Asunto(s)
Archaea/clasificación , Archaea/aislamiento & purificación , Células Eucariotas/clasificación , Modelos Biológicos , Células Procariotas/clasificación , Aminoácidos/metabolismo , Archaea/metabolismo , Archaea/ultraestructura , Células Eucariotas/citología , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Evolución Molecular , Genoma Arqueal/genética , Sedimentos Geológicos/microbiología , Lípidos/análisis , Lípidos/química , Filogenia , Células Procariotas/citología , Células Procariotas/metabolismo , Células Procariotas/ultraestructura , Simbiosis
11.
ISME J ; 13(10): 2465-2474, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31171857

RESUMEN

A deep-branching clade of Thaumarchaeota, conventionally called Terrestrial hot spring creanarchaeotic group (THSCG), is a missing link between thaumarchaeotic ammonia oxidizers and the deeper-branching non-ammonia oxidizers, such as Crenarchaeota and Candidatus Korarchaeota. Here, we report isolation of the first cultivated representative from the THSCG, named as NAS-02. Physiological characterization demonstrated that the isolate was a thermoacidophilic, sulfur- and iron-reducing organoheterotroph, which was supported by gene contents encoded in its complete genome. There was no evidence for ammonia oxidation by the isolate. Members in THSCG are likely thermophiles, and may play roles in degrading cell debris as a scavenger and in biogeochemical cycling of sulfur and iron in the hot environments, as suggested by the physiological characteristics of the isolate and the geographical distribution of the 16S rRNA gene sequences of THSCG in terrestrial hot springs and marine hydrothermal fields. Phylogenetic analysis suggests that the THSCG lineage represented by NAS-02 has gained the ability of sulfur reduction via horizontal gene transfer. Based on the phylogeny and physiology, we propose the name Conexivisphaera calidus gen. nov., sp. nov. to accommodate the isolate.


Asunto(s)
Archaea/metabolismo , Manantiales de Aguas Termales/microbiología , Hierro/metabolismo , Azufre/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , ADN Bacteriano/genética , Manantiales de Aguas Termales/química , Calor , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Microbes Environ ; 33(4): 366-377, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30381615

RESUMEN

Rock outcrops of aged deep-sea seamounts are generally covered with Fe and Mn oxides, known as ferromanganese (Fe-Mn) crusts. Although the presence of microorganisms in Fe-Mn crusts has been reported, limited information is currently available on intra- and inter-variations in crust microbial communities. Therefore, we collected several Fe-Mn crusts in bathyal and abyssal zones (water depths of 1,150-5,520 m) in the Takuyo-Daigo Seamount in the northwestern Pacific, and examined microbial communities on the crusts using culture-independent molecular and microscopic analyses. Quantitative PCR showed that microbial cells were abundant (106-108 cells g-1) on Fe-Mn crust surfaces through the water depths. A comparative 16S rRNA gene analysis revealed community differences among Fe-Mn crusts through the water depths, which may have been caused by changes in dissolved oxygen concentrations. Moreover, community differences were observed among positions within each Fe-Mn crust, and potentially depended on the availability of sinking particulate organic matter. Microscopic and elemental analyses of thin Fe-Mn crust sections revealed the accumulation of microbial cells accompanied by the depletion of Mn in valleys of bumpy crust surfaces. Our results suggest that heterogeneous and abundant microbial communities play a role in the biogeochemical cycling of Mn, in addition to C and N, on crusts and contribute to the extremely slow growth of Fe-Mn crusts.


Asunto(s)
Biodiversidad , Sedimentos Geológicos/microbiología , Hierro , Manganeso , Microbiota , Océanos y Mares , ADN Bacteriano/genética , Sedimentos Geológicos/química , Océano Pacífico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Ecol Evol ; 8(16): 8380-8395, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30250710

RESUMEN

The abundance and biomass of benthic foraminifera are high in intertidal rocky-shore habitats. However, the availability of food to support their high biomass has been poorly studied in these habitats compared to those at seafloor covered by sediments. Previous field and laboratory observations have suggested that there is diversity in the food preferences and modes of life among rocky-shore benthic foraminifera. In this study, we used the stable nitrogen isotopic composition of amino acids to estimate the trophic position, trophic niche, and feeding strategy of individual foraminifera species. We also characterized the configuration and structure of the endobiotic microalgae in foraminifera using transmission electron microscopy, and we identified the origin of endobionts based on nucleotide sequences. Our results demonstrated a large variation in the trophic positions of different foraminifera from the same habitat, a reflection of endobiotic features and the different modes of life and food preferences of the foraminifera. Foraminifera did not rely solely on exogenous food sources. Some species effectively used organic matter derived from endobionts in the cell cytoplasm. The high biomass and species density of benthic foraminifera found in intertidal rocky-shore habitats are thus probably maintained by the use of multiple nitrogen resources and by microhabitat segregation among species as a consequence.

14.
Proc Biol Sci ; 285(1882)2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-30051825

RESUMEN

Life stages of some animals, including amphibians and insects, are so different that they have historically been seen as different species. 'Metamorphosis' broadly encompasses major changes in organism bodies and, importantly, concomitant shifts in trophic strategies. Many marine animals have a biphasic lifestyle, with small pelagic larvae undergoing one or more metamorphic transformations before settling into a permanent, adult morphology on the benthos. Post-settlement, the hydrothermal vent gastropod Gigantopelta chessoia experiences a further, cryptic metamorphosis at body sizes around 5-7 mm. The terminal adult stage is entirely dependent on chemoautotrophic symbionts; smaller individuals do not house symbionts and presumably depend on grazing. Using high-resolution X-ray microtomography to reconstruct the internal organs in a growth series, we show that this sudden transition in small but sexually mature individuals dramatically reconfigures the organs, but is in no way apparent from external morphology. We introduce the term 'cryptometamorphosis' to identify this novel phenomenon of a major body change and trophic shift, not related to sexual maturity, transforming only the internal anatomy. Understanding energy flow in ecosystems depends on the feeding ecology of species; the present study highlights the possibility for adult animals to make profound shifts in biology that influence energy dynamics.


Asunto(s)
Gastrópodos/fisiología , Animales , Tamaño Corporal , Tracto Gastrointestinal/anatomía & histología , Gastrópodos/anatomía & histología , Respiraderos Hidrotermales , Metamorfosis Biológica , Simbiosis
15.
BMC Evol Biol ; 17(1): 62, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28249568

RESUMEN

BACKGROUND: Extreme environments prompt the evolution of characteristic adaptations. Yet questions remain about whether radiations in extreme environments originate from a single lineage that masters a key adaptive pathway, or if the same features can arise in parallel through convergence. Species endemic to deep-sea hydrothermal vents must accommodate high temperature and low pH. The most successful vent species share a constrained pathway to successful energy exploitation: hosting symbionts. The vent-endemic gastropod genus Gigantopelta, from the Southern and Indian Oceans, shares unusual features with a co-occurring peltospirid, the 'scaly-foot gastropod' Chrysomallon squamiferum. Both are unusually large for the clade and share other adaptive features such as a prominent enlarged trophosome-like oesophageal gland, not found in any other vent molluscs. RESULTS: Transmission electron microscopy confirmed endosymbiont bacteria in the oesophageal gland of Gigantopelta, as also seen in Chrysomallon. They are the only known members of their phylum in vent ecosystems hosting internal endosymbionts; other vent molluscs host endosymbionts in or on their gills, or in the mantle cavity. A five-gene phylogenetic reconstruction demonstrated that Gigantopelta and Chrysomallon are not phylogenetically sister-taxa, despite their superficial similarity. Both genera have specialist adaptations to accommodate internalised endosymbionts, but with anatomical differences that indicate separate evolutionary origins. Hosting endosymbionts in an internal organ within the host means that all resources required by the bacteria must be supplied by the animal, rather than directly by the vent fluid. Unlike Chrysomallon, which has an enlarged oesophageal gland throughout post-settlement life, the oesophageal gland in Gigantopelta is proportionally much smaller in juveniles and the animals likely undergo a trophic shift during ontogeny. The circulatory system is hypertrophied in both but the overall size is smaller in Gigantopelta. In contrast with Chrysomallon, Gigantopelta possesses true ganglia and is gonochoristic. CONCLUSIONS: Key anatomical differences between Gigantopelta and Chrysomallon demonstrate these two genera acquired a similar way of life through independent and convergent adaptive pathways. What appear to be the holobiont's adaptations to an extreme environment, are driven by optimising bacteria's access to vent nutrients. By comparing Gigantopelta and Chrysomallon, we show that metazoans are capable of rapidly and repeatedly evolving equivalent anatomical adaptations and close-knit relationships with chemoautotrophic bacteria, achieving the same end-product through parallel evolutionary trajectories.


Asunto(s)
Gastrópodos/anatomía & histología , Gastrópodos/clasificación , Respiraderos Hidrotermales , Aclimatación , Animales , Bacterias/aislamiento & purificación , Bacterias/ultraestructura , Ecosistema , Gastrópodos/genética , Gastrópodos/microbiología , Branquias/microbiología , Océano Índico , Filogenia , Simbiosis
16.
Arch Microbiol ; 199(2): 335-346, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27766355

RESUMEN

A novel iron-oxidizing chemolithoautotrophic bacterium, strain ET2T, was isolated from a deep-sea sediment in a hydrothermal field of the Bayonnaise knoll of the Izu-Ogasawara arc. Cells were bean-shaped, curved short rods. Growth was observed at a temperature range of 15-30 °C (optimum 25 °C, doubling time 24 h) and a pH range of 5.8-7.0 (optimum pH 6.4) in the presence of NaCl at a range of 1.0-4.0 % (optimum 2.75 %). The isolate was a microaerophilic, strict chemolithoautotroph capable of growing using ferrous iron and molecular oxygen (O2) as the sole electron donor and acceptor, respectively; carbon dioxide as the sole carbon source; and either ammonium or nitrate as the sole nitrogen source. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the new isolate was related to the only previously isolated Mariprofundus species, M. ferrooxydans. Although relatively high 16S rRNA gene similarity (95 %) was found between the new isolate and M. ferrooxydans, the isolate was distinct in terms of cellular fatty acid composition, genomic DNA G+C content and cell morphology. Furthermore, genomic comparison between ET2T and M. ferrooxydans PV-1 indicated that the genomic dissimilarity of these strains met the standard for species-level differentiation. On the basis of its physiological and molecular characteristics, strain ET2T (= KCTC 15556T = JCM 30585 T) represents a novel species of Mariprofundus, for which the name Mariprofundus micogutta is proposed. We also propose the subordinate taxa Mariprofundales ord. nov. and Zetaproteobacteria classis nov. in the phylum Proteobacteria.


Asunto(s)
Proteobacteria/clasificación , Proteobacteria/aislamiento & purificación , Agua de Mar/microbiología , Crecimiento Quimioautotrófico , Ácidos Grasos/análisis , Respiraderos Hidrotermales , Hierro/metabolismo , Filogenia , Proteobacteria/genética , Proteobacteria/metabolismo , ARN Ribosómico 16S/genética
17.
Appl Environ Microbiol ; 82(19): 5741-55, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27422841

RESUMEN

UNLABELLED: It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE: We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy-energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields.


Asunto(s)
Compuestos Férricos/metabolismo , Respiraderos Hidrotermales/microbiología , Hierro/metabolismo , Proteobacteria/clasificación , Microbiota , Oxidación-Reducción , Océano Pacífico , Proteobacteria/genética , Proteobacteria/metabolismo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN , Espectroscopía de Absorción de Rayos X
18.
Biol Bull ; 230(3): 257-67, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27365420

RESUMEN

Survival of deep-sea Calyptogena clams depends on organic carbon produced by symbiotic, sulfur-oxidizing, autotrophic bacteria present in the epithelial cells of the gill. To understand the mechanism underlying this symbiosis, the development of a long-term cultivation system is essential. We cultivated specimens of Calyptogena okutanii in an artificial chemosynthetic aquarium with a hydrogen sulfide (H2S) supply system provided by the sulfate reduction of dog food buried in the sediment. We studied morphological and histochemical changes in the clams' gills by immunohistochemical and energy-dispersive X-ray analyses. The freshly collected clams contained a high amount of elemental sulfur in the gill epithelial cells, as well as densely packed symbiotic bacteria. Neither elemental sulfur nor symbiotic bacteria was detected in any other organs except the ovaries, where symbiotic bacteria, but not sulfur, was detected. The longest survival of an individual clam in this aquarium was 151 days. In the 3 clams dissected on Days 57 and 91 of the experiment, no elemental sulfur was detected in the gills. The symbiotic bacteria content had significantly decreased by Day 57, and was absent by Day 91. For comparison, we also studied the deep-sea mussel Bathymodiolus septemdierum, which harbors a phylogenetically close, sulfur-oxidizing, symbiotic bacterium with similar sulfur oxidation pathways. Sulfur particles were not detected, even in the gills of the freshly collected mussels. We discuss the importance of the proportion of available H2S and oxygen to the bivalves for elemental sulfur accumulation. Storage of nontoxic elemental sulfur, an energy source, seems to be an adaptive strategy of C. okutanii.


Asunto(s)
Mytilidae/microbiología , Mytilidae/fisiología , Azufre/metabolismo , Animales , Branquias/química , Branquias/microbiología , Moco/química , Azufre/análisis , Simbiosis
19.
Front Microbiol ; 7: 163, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925038

RESUMEN

Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much (15)N or (34)S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200-500 nm in diameter and co-occurred with possible endobionts, were labeled with (15)N originated from (15)N-labeled nitrate under anoxia and were labeled with both (15)N and (34)S under dysoxia. The labeling with (15)N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions.

20.
Biol Bull ; 228(3): 217-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26124448

RESUMEN

Hydrothermal vent organisms undergo extreme environments that may require unique innovations. The present study reports a distinct case of cellular supportive systems in the nervous systems of a scale-worm, Branchinotogluma japonica, endemic to deep-sea hydrothermal vents. We found two organizations in the tissues of these animals. First, multi-layers of glia ensheath the ventral cell bodies of the brain and ventral nerve cord, in a manner similar to that of myelin or lamellar ensheathments. Second, matrices of numerous penetrative fibers, or tonofilaments, composed of bundles of ca. 20-nm fibers, are directly connected with the basal parts of epidermal cuticles and run into the diffuse intercellular spaces of the brain neuropils and peripheral nerves. Both types of tissue might be mechanical supportive structures for the neuronal cell bodies. In addition, as a glial function, the multi-layer membranes and the epithelial support cells may be required for physicochemical homeostatic regulation to filter toxic heavy metals and for inhibiting breakdown of glial membrane integrity under strong oxidative stress imposed by hypoxia in the hydrothermal vent environment. Similar functions are known in the well-studied cases of the blood-brain barrier in mammalian brains, including in human stroke.


Asunto(s)
Respiraderos Hidrotermales , Poliquetos/ultraestructura , Animales , Encéfalo/citología , Encéfalo/ultraestructura , Filamentos Intermedios/ultraestructura , Microscopía Electrónica de Transmisión , Neuroglía/ultraestructura , Neuronas/citología , Neuronas/ultraestructura , Poliquetos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...